The development of therapies for ultra-orphan disorders:

Challenges and successes in the development of enzyme replacement therapy for Mucopolysaccharidosis I

Emil D. Kakkis, M.D., Ph.D.*
Chief Medical Officer
BioMarin Pharmaceutical Inc.
BioMarin Pharmaceutical Inc.

Company Overview

Fully-integrated Biopharmaceutical Company
Located in Novato, California

- Develop and commercialize products for serious diseases
- Approval of second metabolic product, Naglazyme™ in 2005
- Two approved metabolic products, third in Phase 3
- U.S. sales force seeing pediatricians
- Strong clinical, regulatory, development and manufacturing
Ultra-Orphan Products in BioMarin’s Pipeline

Matching Proven Science With Proven Needs
Treating Ultra-Orphan or Rare Disorders: We know how but we will we?

• Patients with rare disorders are underserved
 - Less knowledge and less interest
 - Limited clinical or treatment experience
 - Less political power

• Developing treatments for rare disorders
 - Lack of disease knowledge hampers clinical design
 - Lack of quantified clinical experience often hinders the definition and use of biochemical and clinical endpoints of disease
 - Lack of expertise and experience in development and regulation
 - Lack of funding
Development of Aldurazyme® (laronidase)
A recombinant human iduronidase for MPS I

- Ultra-rare disorder with incidence of 1:100,000 births
- Strong technical basis for treatment
- Challenge to get product manufactured and tested in humans
- Small biotech startup takes on the project and obtains funding
- Treatment successfully developed and approved in 2003

Success factors
- Patient support groups
- The right size biotechnology company
- Committed small group of project members
Mucopolysaccharidosis I (MPS I)
A lysosomal storage disorder

- Deficiency of lysosomal enzyme α-L-iduronidase
- Progressive accumulation of glycosaminoglycans (GAG)
- Multi-systemic, heterogeneous
- Severe morbidity and early mortality
- Rare (est. incidence 1:100,000)
- Significant unmet medical need
Matching Proven Science With Proven Needs

Treatment for MPS I Patients in 2003

• Symptomatic management
 - Palliates condition - does not prevent progression
 - Limited utility
 - High risk of anesthesia/surgical complications

• Bone marrow (stem cell) transplantation
 - Does treat some of medical problems
 - Mortality in 10-50%
 - Graft versus host disease in up to 50%
Mucopolysaccharidosis I: A challenge to treat

• Pervasive and profound disease in every body system
 - No patient treated with an approved drug today has as many medical problems as MPS I patients
 - Many affected tissues are less accessible to therapy (e.g. connective tissues)

• Chronic and progressive disease
 - Chronic scarring and injury accumulate over many years
 - Heterogeneous combination of irreversible and reversible components

• Rare disorder that will not allow for pharmaceutical development
 - Who will fund the development?

Why work on it? It will never happen.
Dr. Elizabeth Neufeld
Rationale for Enzyme Therapy of MPS I
Discovery of Correction in vitro 1968
Uptake of Iduronidase into MPS I Cells

Iduronidase

Lysosomes

Endocytosis
Enzyme replacement therapy for MPS I

• Rationale and technical basis
 - Direct application of correction in vivo

• Good commercial model in Cerezyme®
 - Successful treatment on the market for Genzyme

• Requirements for reaching human studies
 - Recombinant sources of enzyme
 - Canine MPS I studies of efficacy and safety
 - Large scale production under GMP
 - Large scale money
Canine MPS I Model
Production Version 1

Microcarrier Culture of Cell line 2.131

Circa 1993

The challenge in treating the large canine model prepared the program for human trials
Canine MPS I Enzyme Replacement Studies

- Distribution to a wide variety of tissues
- Effective reduction in tissue GAG
- Effective minimum dose determined
- Limitations identified
Search for a company to fund the work for humans

• Xoma in 1993
 - Visited Santa Monica location, cordial but not interested
 - Had a really important sepsis product in development

• Amgen in 1993
 - “NBS I? Sorry, I don’t know what time it is”

• Orphan Medical in 1993
 - Supportive and helpful but project too small and complicated

• Genzyme in 1993
 - “This will cost $50 million to develop”
 - Correction: Actual cost now >> $100 million USD
How to fund development?

- **Write grants**
 - Never enough money for production
 - No interest: not “sexy” science

- **Angel investor**
 - No star power

- **Start a foundation**
 - Could not find a rich widow

- **Develop a new thigh cream**
 - **Tag Line:**
 - “Body sculpting”
 - *enzyme cream now with real iduronidase*
 - Sales of cream support therapeutic production and trials
The patients save the day: The Ryan Foundation

• Formed by Mark and Jeanne Dant for their affected son Ryan
• Raise money for research into a treatment
• First fundraiser: Bake sale in front of a bank: $242 total
• Directly funnel money to researchers
• Eventually raised $100-300,000 annually to support development
A small biotech company looking for products near to the clinic steps forward: BioMarin

• Fall 1996 John Klock and Grant Denison visit Dr. Neufeld and Kakkis at UCLA
• Fundraising in March 1997 and company formed
• April 1997 Research and Development Grant to Harbor-UCLA REI to manufacture and study enzyme therapy in MPS I
• September 1997 IND filed in the USA
• December 1997 First patient treated
• Genzyme joins the effort in September 1998 after data released on first clinical study
First Dose: December 19, 1997
Harbor-UCLA Medical Center

Entire production and clinical team

Matching Proven Science With Proven Needs
Aldurazyme is approved in the US and EU

- Phase 1/2 Study and Phase 3 Study completed from 1997-2002
- Approved in US in 2003
 - Positive FDA Advisory Committee Meeting:
 - 12-0 votes on FVC and 6MWT, Jan. 15, 2003
 - FDA approved on April 30, 2003 for US
- Approved in EU in 2003
 - Positive CPMP opinion in EU: Feb 20, 2003
 - EMEA approved on June 11, 2003 for EU
- Status in 2006
 - More than 400 MPS I patients on enzyme therapy in more than 30 countries worldwide
Lessons learned about developing a treatment for a rare disorder

• Strong biologic basis for the treatment
• Patient support groups help in the early phase
 - Important but not enough to finish
• Find corporate support from an appropriately sized company
 - For MPS I, it was a startup biotech
 - Genzyme was not interested until AFTER solid clinical data
• Need an early clinical success to drive funding
 - Clinical study grade material appropriate for Phase 1/2 studies
 - Small well-designed study that provides compelling data
• An appropriate commercial model for success will help get investors to support the work
 - BioMarin had Genzyme’s success with Cerezyme
Finding the path forward today

• Venture firms are not funding preclinical projects generally
 - Exception for proven drug models or powerful technology
 - Hard to sell preclinical stage programs in rare disorders but not impossible

• Large companies are looking for clinical stage products
 - Hard to get their interest with preclinical products

• Options for getting a project going:
 - 1) Search for startups or smaller company with funds in your therapeutic area that need additional products
 ‣ Perhaps a company with one successful product that needs some early stage pipeline
 ‣ Get a business development consultant to prepare an offering memorandum
 - 2) Form a virtual company, and obtain SBIR funding
 ‣ More funds than typical RO1 grants and easier to get
 ‣ Could be sufficient to reach a clinical study if production costs are reasonable
 ‣ Hard to get the expertise needed to really drive development
 - 3) Angel investor or rich widow or connection to Bill Gates
Treating other ultra-orphan disorders
What are the challenges?

• Improve the knowledge base about the disorders
• Develop biochemical markers that can allow for more efficient clinical development
 - No validated surrogate endpoints in rare disorders
• Improve the regulatory process for ultra-rare products
 - Development path not optimal
 - Critical Path Initiative ongoing at FDA
• Solve the funding cost/product cost challenge
 - High development costs and rare disease means the drug will be very expensive to recover investment
Aldurazyme: 12 years in development
Project Start: July 1991 to FDA Approval: April 2003

Mark and Ryan Dant

Matching Proven Science With Proven Needs
Followup of Ryan 7 years later

16 yrs old in 2005

7 years on laronidase and just got his license and car