Obstacles to Translation
Conference

Overcoming obstacles to develop siRNA-based therapeutics for pachyonychia congenita

Roger L. Kaspar, Ph.D
TransDerm
Santa Cruz, California
March 1, 2006
Congenital skin disorders

10,000 congenital human diseases thought to be monogenic

• Caused by single error in single human gene
• ~20% lead to skin disorders
 – Netherton syndrome (recessive)
 – Darier’s disease and Hailey-Hailey disease (dominant)
 – Peeling skin syndrome (recessive)
 – Non-bullous congenital ichthyosiform erythroderma (recessive)
 – Epidermolysis bullosa (recessive and dominant forms)
 – Epidermolytic hyperkeratosis (dominant)
 – Loricrin keratoderma (dominant)
 – Various gap junction diseases
 – Pachyonychia congenita (dominant)
• Incidence ~1:100,000 to 1:1,000,000
• Total afflicted by rare monogenic skin disorders up to 1% of population
Pachyonychia congenita (PC)

- Autosomal dominant negative disorder resulting from mutant keratins
- 2 disease forms with similar but non-identical manifestations
 - Symptoms result from faulty keratin filaments
 - Dystrophic nails (up to 1 cm thick)
 - Palmoplantar keratosis
 - Blistering at pressure points
 - Leukoplaikia on tongue and buccal mucosa
- PC1 (Jadasson-Lewandowsky syndrome)
 - Caused by mutations in keratin 6a (K6a) or K16 genes
- PC2 (Jackson-Lawler syndrome)
 - Caused by mutations in K6b or K17 genes
- Main patient complaint--blisters on feet make walking painful and unbearable
- Goal--develop inhibitors that knock down k6a (soles of feet)
 - Working in partnership with PC-Project and International PC Consortium (IPCC)
 - No K6a probably okay
 - 50% knockdown likely therapeutic
 - Delivery of inhibitors major impediment
Challenges to a PC therapy

- Development of potent and specific inhibitors to block expression of mutant keratin with little or no effect on wildtype expression

- Effective delivery mechanism of inhibitors to affected cells
RNAi
RNA interference (RNAi)

- Dicer
- siRNA
- shRNA
- RISC
Transfected cells stained with DAPI and visualized by fluorescence microscopy

K6a-wt/YFP

K6a-N171K mut/YFP
Screening for effective N171K siRNA inhibitors

K6A WT GAACAGATCAAGACCCTCAACAACAAGTTTGCTCCTTTC
K6A N171K GAACAGATCAAGACCCTCAAAACAAAGTTTGCTCCTTTC

Inhibitors:
K6a_513.1 ACAGAUCAAGACCCUCAAAUU
K6a_513.2 CAGAUCAAGACCCUCAAAAUU
K6a_513.3 AGAUCAAGACCCUCAAAAUU
K6a_513.4 GAUCAAGACCCUCAAAACUU
K6a_513.5 AUCAAGACCCUCAAAACAUU
K6a_513.6 UCAGACCCUCAAAACAAUU
K6a_513.7 CAAGACCCUCAAAACAAAGUU
K6a_513.8 AAAGACCCUCAAAACAAAGUUU
K6a_513.9 AAAGACCCUCAAAACAAAGUUUU
K6a_513.10 ACACCCUCAAAACAAAGUUUU
K6a_513.11 ACACCCUCAAAACAAAGUUUUU
K6a_513.12 ACACCCUCAAAACAAAGUUUGU
K6a_513.13 ACACCCUCAAAACAAAGUUUGCU
K6a_513.14 ACACCCUCAAAACAAAGUUUGCUU
K6a_513.15 ACACCCUCAAAACAAAGUUUGCUUU
K6a_513.16 ACACCCUCAAAACAAAGUUUGCUUUU
K6a_513.17 ACACCCUCAAAACAAAGUUUGCUUUU
K6a_513.18 ACACCCUCAAAACAAAGUUUGCUUUU
K6a_513.19 ACACCCUCAAAACAAAGUUUGCUUUU
Transfected cells stained with DAPI and visualized by fluorescence microscopy

K6a-wt/YFP

K6a-N171K mut/YFP
Tissue culture model of dominant negative genetic disorder
K6a wt + K6a N171K expression plasmids + indicated siRNA

Control siRNA K6a N171K siRNA #1 K6a N171K siRNA #2

Percentage of cells containing:

Aggregates 72 4 8
Mixture 12 11 13
Filaments 16 85 79
Delivery
Delivery
Delivery
Delivery
β-actin → fLuc → 2a → eGFP → siRNA inhibitor

L2G reporter
Reporter gene expression in mouse footpad
Transgenic eGFP (L2G) mouse model

Fluorescence (Green Pseudocolor)

Cao et al., Transplantation, 2005
SiRNA-mediated inhibition of eGFP expression in transgenic mouse expressing eGFP

Day 0
Day 3
Day 6
Day 14

Top paw--eGFP siRNA
Bottom paw--NCS4 siRNA
Challenges to Translation for PC therapeutic

- Clear understanding of what will be required by FDA for IND approval
 - Lack of a good PC animal model
 - Tissue culture efficacy ≠ mice ≠ pigs ≠ humans
 - Will each siRNA will be treated as a new drug entity by the FDA (major obstacle for rare diseases such as PC) or will siRNA be treated as a class having similar toxicities
 - Sufficient patients with specific PC mutations to give meaningful results in clinical trials

- Intellectual property
 - Uncertainty over ability to operate in RNAi space and availability of appropriate licenses

- Supply of reasonably-priced synthetic siRNAs of appropriate quality

- Delivery
 - Efficient “patient friendly” delivery mechanism of nucleic acids to keratinocytes

- Limited resources
 - Partnerships with groups that see beyond the ultra-rare nature of PC and its value as a prototype for dominant negative (and other) skin disorders
 - More $s mean faster progress
Acknowledgements

• Stanford University
 – Qian Wang
 – Pauline Chu
 – Tim Doyle
 – Christopher Contag

• SomaGenics
 – Heini Ilves
 – Brian Johnston

• TransDerm
 – Robyn Hickerson
 – Roger Kaspar

• Dharmacon Inc.
 – Devin Leake
 – Anastasia Khvorova

• University of Dundee
 – Frances Smith
 – Irwin McLean

• PC-Project
 – Mary Schwartz

• International PC Consortium
 – Sancy Leachman-U. of Utah
 – Leonard Milstone-Yale
 – Rudolf Leube-U. of Mainz
 – Markus Landthaler-Rockefeller

• SomaGenics
 – Heini Ilves
 – Brian Johnston